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e The Problem

— When building distributed systems, we often
observe unexpectedly low performance
* the reasons for which are usually not obvious

— The bottlenecks can be in any of the following
components:
» the applications
* the operating systems

 the disks or network adapters on either the sending or
receiving host

* the network switches and routers, and so on

e The Solution:

* Highly instrumented systems with precision timing
iInformation and analysis tools
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Bottleneck Analysis ceece?]
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* Distributed system users and developers often
assume the problem is network congestion

— This is often not true

* In our experience tuning distributed applications,
performance problems are due to:

— network problems: 40%
— host problems: 20%

— application design problems/bugs: 40%
* 50% client , 50% server

 Thereforeitis equally important to instrument the
applications
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NetLogger Toolkit cecoeed) :

« We have developed the NetLogger Toolkit

— A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

— NetLogger also includes tools for host and
network monitoring

« The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

NetLogger



Why “NetLogger”? cecoeed) ’\‘

« The name “NetLogger” is somewhat misleading

— Should really be called: “Distributed
Application, Host, and Network Logger”

* “NetLogger” was a catchy name that stuck
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When to use NetLogger cocoond] :

« When you want to:

— do performance/bottleneck analysis on
distributed applications

— determine which hardware components to
upgrade to alleviate bottlenecks

— do real-time or post-mortem analysis of
applications

— correlate application performance with system
iInformation (ie: TCP retransmission's)

 works best with applications where you can follow
a specific item (data block, message, object)
through the system
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 Analyzing massively parallel programs (e.g.: MPI)

— Current visualization tools don’t scale beyond
tracking about 20 types of events at a time

 Analyzing many very short events

— system will become overwhelmed if too many
events

— we typically use NetLogger to monitor events
that take > .5 ms

— e.g: probably don’t want to use to instrument
the UNIX kernel
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 NetLogger Toolkit contains the following
components:

— NetLogger message format

— NetLogger client library

— NetLogger visualization tools

— NetLogger host/network monitoring tools

* Additional critical component for distributed
applications:

— NTP (Network Time Protocol) is required to
synchronize the clocks of all systems
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« We are using the IETF draft standard Universal Logger
Message (ULM) format (http://www.ietf.org/internet-
drafts/draft-abela-ulm-05.txt):

— alist of “field=value” pairs
— required fields: DATE, HOST, PROG, and LVL

 LVL is the severity level (Emergency, Alert, Error, Usage,
etc.)

— followed by optional user defined fields

 NetLogger adds these required fields:

* NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT _USER_TIME,
NETSTAT RETRANSSEG
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« Sample NetLogger ULM event:

DATE=19980430133038. 55784 HOST=f o0o. | bl . gov
PROG=t est prog LVL=Usage NL. EVNT=SEND DATA
SEND. SZ=49332

— This says program named testprog on host
foo.lbl.gov performed event named SEND DATA,
size = 49332 bytes, at the date/time given

 User-defined data elements (any number) are used to
store information about the logged event - for example:

* NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

* NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event
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Other Formats ceecer?]

« We’d like to convince everyone to use the
ULM/NetLogger format for logging

— This way we can all share log file management
and visualization tools

 Probably not realistic

— Working on filters to convert the following
to/from NetLogger format

 Pablo, NWS. Surveyor?, others?

— Also working on a binary representation for
more efficient use of network and disk

e If ULM is not adequate, whose format is better?
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 NetLogger Toolkit includes application libraries for
generating NetLogger messages
— Can send log messages to:
* file
* host/port (netlogd)
e syslogd
* memory, then one of the above

 C, C++, Java, Perl, and Python APIs are currently
supported
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 Only 6 simple calls:

— NetLoggerOpen()
e create NetLogger handle, specify logging destination

— NetLoggerWrite()
e get timestamp, build NetLogger message, send to destination

— NetLoggerGTWrite()
* must pass in results of Unix gettimeofday() call

— NetLoggerFlush()
« flush any buffered message to destination

— NetLoggerSetLevel()
« set ULM severity level

— NetLoggerClose()
« destroy NetLogger handle
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Sample NetLogger Use ceecerd]

| p = Net Logger Open( net hod, prognanme, NULL,
host nane, NL_ PORT);

whil e (!done)

{
Net LoggerWite(l p, "EVENT START",
"TEST. SI ZE=%", si ze);
[* performthe task to be nonitored */
done = do_sonet hi ng(data, size),;
Net LoggerWite(l p, "EVENT_END');
}

Net Logger Cl ose( | p);

Netl_ogger |



NetLogger Host/Network Tools | sreeee

BERKELEY LAaB

/\
m‘

 Wrapped UNIX network and OS monitoring tools to log
“Interesting” events using the same log format

— netstat (TCP retransmissions, etc.)
— vmstat (system load, paging, etc.)
— lostat (disk activity)

— ping

« These tools have been wrapped with Perl or Java
programs which:

— parse the output of the system utility
— build NetLogger messages containing the results
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NetLogger Network Tools cerce]
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 NetLogger tool for SNMP queries
— Usage: nl_snmpget hostname object [port]

« Examples:
— host monitoring
* nl _snnpget uni Xx_host sysNane
— Returns: system.sysName.0 = wakko.lbl.gov
— router monitoring
* nl _snnpget routernane iplnDelivers 3
—Returns: tcp.tcplnErrs.3 = 4000
— ATM switch monitoring
* nl _snnpget sw tchnane sonet Li neFEBES
* nl _snnpget sw tchnane portTransm ttedCells
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 Logged events are correlated with system
behavior to characterize the performance of the
system during actual operation

— facilitates bottleneck identification

e Using “life-lines” to visualize the data flow is the
key to easy interpretation of the results.

 We believe this type of monitoring is a critical
component to building reliable high performance
data intensive systems
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Event

NetLogger Event “Life Lines”
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End Processing / /
Begin Processing I J

End Read

Begin Read

Request data

time
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* In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

« Sample Event Ids
— file name
— block ID
— frame ID
— user name
— host name
— etc.

| NetLogger I
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| p = Net Logger Open( net hod, prognane, NULL, hostnanme, NL_PORT);

f or

}

(1=0; i< numblocks; i++) {

Net LoggerWite(lp, “START_READ’,

“BLOCK | D=% BLOCK Sl ZE=%", 1, size);

read bl ock(1);
Net LoggerWite(l p, “END READ’,

“BLOCK | D=% BLOCK_SI ZE=%", i, size);

Net LoggerWite(lp, “START_PROCESS’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

process_bl ock(i);
Net LoggerWite(lp, “END_PROCESS’,

“BLOCK | D=% BLOCK_ SI ZE=%", i, size);

Net LoggerWite(lp, “START_SEND’,

“BLOCK | D=% BLOCK_ SI ZE=%", i, size);

send bl ock(i);
Net LoggerWite(lp, “END SEND’,

“BLOCK | D=% BLOCK Sl ZE=%", i, size);

Net Logger Cl ose(l p);
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 Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

— this is provided by nlv (NetLogger Visualization)

* nlv functionality:

— can display several types of NetLogger events at
once

— user configurable: which events to plot, and the
type of plot to draw (lifeline, load-line, or point)

— play, pause, rewind, slow motion, zoom in/out, and
SO on
— nlv can be run post-mortem or in real-time

e real-time mode done by reading the output of netlogd as it
IS being written
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e nlv supports graphing of “points”, “load-lines”, and
“lifelines”

event | i S % point

avent MW\/\ load-line
event E / /

.
event D .{ J' / lifeline

event E / / /
ever / | / /

event A&
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NLV with lifeline, load-line, and “~ A
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# display server data as a “lifeline”
set +SERVER READ
type |ine

# lifeline constructed from nessages fromthe sane client
and server

id [ CLIENT_HOST DPSS. SERV ]

# nmessages wth the sane DPSS. SERV get the sane col or
gr oup DPSS. SERV

[ +APP_SENT +DPSS SERV_| N +DPSS START READ
+DPSS_END READ +DPSS START WRI TE +APP_RECE! VE ]

| Netl_ogger |



Network Time Protocol coreend]
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 For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

— NTP is used to synchronize time of all hosts In
the system.

—NTP is from Dave Mills, U. of Delaware
(http://lwww.eecis.udel.edu/~ntp/)

— Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

— typically get clock synchronized to within 1
millisecond of each other
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 You'll probably want to add a NetLogger event to the
following places in your distributed application:

— before and after all disk 1/O
— before and after all network I/O
— entering and leaving each distributed component

— before and after any significant computation
e e.g.. an FFT operation

— before and after any significant graphics call
e e.g.: certain CPU intensive OpenGL calls

 This is usually an iterative process

— add more NetLogger events as you zero in on the
bottleneck

NetLogger
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Application

 Radiance is a suite of programs for the analysis
and visualization of lighting in design.

— Input includes the scene geometry, materials, luminance,
time, date, and sky conditions

 Radiance has been adapted at LBNL to run on
multiple UNIX workstations

— The image is broken into many small pieces, and
Illumination calculations are performed for each piece
Independently

 Used NetLogger to measure:
— overall system throughput,
— latency for each stage of getting data, processing it, and
writing it
— patterns of latency which reflect resource contention and
other interaction delays
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NetLogger Radiance Results:
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 The Distributed Parallel Storage Server (DPSS)

— provides high-speed parallel access to remote
data

— Unique features of the DPSS:

 On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

 NetLogger was used for performance tuning and
debugging of the DPSS
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DPSS Cache Architecture ceceeet] i
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DPSS Instrumentation ceceend] :

BERKELEY LAB

from other DPSS

servers
<
O /e
A 5% A
Client @ )
Application A DpSS Master [
to other
* 7 clients
Y s
Block DPSS Data Server Block
Request Writer
Thread
s A
' -------__-_---------_-,-—’
Shared Memory Cachg
% @' Disk Disk
ep Read - Read Read Read
Thread ﬁb Thread Thread Thread
A\
* = monitoring point % % % %
Disk Disk Disk Disk

NetLogger
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NetLogger Results for the DPSS
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Current Work: JAMM ceecerd]

« Java Agents for monitoring and management
(JAMM)

— Java RMI-based agents are used to start up
NetLogger versions of system tools

e netstat, vmstat, uptime, xntpdc, ping, netperf,
etc.

 Monitoring can be based on application use

— e.g.: only do monitoring while a client is
connected to a server

 For more info see: http://www-didc.Ibl.gov/JAMM/
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Current Work ceece?]

 NetLogger enhancements:

— adding Globus security

* plan to use GlobuslO for sending NetLogger
messages to netlogd

— binary transmission/storage format

 Deployment plan
— SNMP-based monitoring goes on all the time

— application/host monitoring triggered by the
application/user
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Log collection/archive service

— netlogd to a file not adequate, need to send
monitoring data to some kind of database (LDAP?)

multicast ability?

— Need to simultaneously send to archive and to one
or more nlv session

how to correlate archived monitoring data with network
configuration data? (i.e.: traceroute)

how to map application traffic to a specific
switch/router port?

Integration with other tools
— Pablo, NWS, Surveyor, etc.
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e Source code and some precompiled binaries are
available at:

— http://www-didc.lbl.gov/NetLogger

e Solaris, Linux, and Irix versions of nlv are
currently supported
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